News Posts matching #4 nm

Return to Keyword Browsing

Hands On with the PowerColor Radeon RX 9070 XT Red Devil and HellHound

At CES 2025, we went hands on with PowerColor's new Radeon RX 9070 series graphics cards. These include the RX 9070 XT and the RX 9070. PowerColor will keep custom board designs common for both SKUs as they're both based on the 4 nm "Navi 48" silicon. We get the general feeling that these cards aren't designed as over-the-top as the RX 7900 series custom designs; since the GPUs are positioned in the performance segment, and AMD's board partners would ideally like to give themselves room to price-wars against NVIDIA's products from the RTX 5070 series.

The PowerColor RX 9070 XT Red Devil features a triple-slot cooling solution. It is a fairly long card, with an aluminium fin-stack heatsink that's ventilated by a trio of fans. The large, rhomboid vent on its backplate gives you the impression that the PCB inside is just two-thirds the length of the card—it's not, it's closer to 80% its length. There is an elaborate LED-illuminated decal at the tail end of the card. The Red Devil gets a few premium features, such as dual-BIOS, and the company's highest factory overclock. The lighting on this card is RGB and controllable via software. The card draws power from a pair of 8-pin PCIe power connectors. The 375 W of power on tap should be sufficient for a performance-segment GPU.

AMD Announces the Ryzen Z2 Line of SoCs for Gaming Handhelds

AMD at the 2025 International CES unveiled the Ryzen Z2 line of SoCs for gaming handhelds that combine an x86-64 based SoC with a customized version of Windows 11. This market segment is poised to heat up with the entry of the Intel Core Ultra 200V "Lunar Lake" processor, and so AMD is responding with its latest IP. The Ryzen Z2 series is based on the 4 nm "Strix Point" silicon, which combines "Zen 5" and "Zen 5c" CPU cores with a fairly large iGPU based on the new RDNA 3.5 graphics architecture that's optimized for LPDDR5X memory. AMD's engineering effort focused on modest CPU performance gains over the Ryzen Z1 "Phoenix Point," but significant graphics performance gains. The NPU is disabled on all models.

The "Strix Point" silicon physically features two CCX, one with four "Zen 5" cores sharing a 16 MB L3 cache, and the other with eight "Zen 5c" cores sharing an 8 MB L3 cache. The iGPU of "Strix Point" is based on RDNA 3.5, and comes with 16 CU (compute units), a step up from the 12 CU of "Phoenix Point." The series is led by the Ryzen Z2 Extreme, which features an 8-core/16-thread CPU configuration that probably consists of four "Zen 5" cores, four "Zen 5c" cores, and a maxed out iGPU with 16 CU. The chip has a cTDP range of 15 W to 35 W. The "Zen 5" cores boost up to 5.00 GHz.

AMD Debuts Radeon RX 9070 XT and RX 9070 Powered by RDNA 4, and FSR 4

AMD at the 2025 International CES announced the Radeon RX 9070 XT and Radeon RX 9070 desktop performance-segment graphics cards. These will be the face of AMD's next generation of gaming graphics products, and will be powered by the new RDNA 4 graphics architecture. AMD hopes to launch both cards within Q1 2025. AMD changed the nomenclature of its gaming GPUs mainly because it has made a tactical retreat from the enthusiast graphics segment, its fastest products will compete in the performance segment. From the way AMD arranged the Radeon RX 9070 series and 9060 series product stack against the backdrop of the Radeon RX 7000 series, the GeForce RTX 4000 series, and the anticipated GeForce RTX 5000 series, the RX 9070 XT will offer performance roughly similar to the Radeon RX 7900 XT in raster, with the RX 9070 being slightly faster than the RX 7800 XT. The RX 9060 XT will beat the RX 7700 XT, while the RX 9060 beats the RX 7600 XT.

With RDNA 4, AMD claims generational SIMD performance increase on the RDNA 4 compute units. The 2nd Gen AI accelerators will boast of generational performance increase, and AMD will debut a locally-accelerated generative AI application down the line, called the AMD Adrenalin AI, which can generate images, summarize documents, and perform some linguistic/grammar tasks (rewriting), and serve as a chatbot for answering AMD-related queries. This is basically AMD's answer to NVIDIA Chat RTX. AMD's 3rd Gen Ray accelerator is expected to reduce the performance cost of ray tracing, by putting more of the ray tracing workload through dedicated hardware, offloading the SIMD engine. Lastly, AMD is expected to significantly upgrade the media acceleration and display I/O of its GPUs.

NVIDIA Plans GeForce RTX 5080 "Blackwell" Availability on January 21, Right After CES Announcement

Hong Kong tech media HKEPC report indicates that NVIDIA's GeForce RTX 5080 graphics card will launch on January 21, 2025. The release follows a planned announcement event on January 6, where CEO Jensen Huang will present the new "Blackwell" architecture. Anticipated specifications based on prior rumors point to RTX 5080 using GB203-400-A1 chip, containing 10,752 CUDA cores across 84 SM. The card maintains 16 GB of memory but upgrades to GDDR7 technology running at 30 Gbps, while other cards in the series are expected to use 28 Gbps memory. The graphics card is manufactured using TSMC's 4NP 4 nm node. This improvement in manufacturing technology, combined with architectural changes, accounts for most of the expected performance gains, as the raw CUDA core count only increased by 10% over the RTX 4080. NVIDIA is also introducing larger segmentation between its Blackwell SKUs, as the RTX 5090 has nearly double CUDA cores and double GDDR7 memory capacity.

NVIDIA is organizing a GeForce LAN event two days before the announcement, marking the return of this gathering after 13 years, so the timing is interesting. NVIDIA wants to capture gamer's hearts with 50 hours of non-stop gameplay. Meanwhile, AMD currently has no competing products announced in the high-end graphics segment, leaving NVIDIA without direct competition in this performance tier. This market situation could affect the final pricing of the RTX 5080, which will be revealed during the January keynote. While the January 21 date appears set for the RTX 5080, launch dates for other cards in the Blackwell family, including the RTX 5090 and RTX 5070 series, remain unconfirmed. NVIDIA typically releases different models in their GPU families on separate dates to manage production and distribution effectively.

TSMC Arizona Plant Operations Will Reportedly Cost 30% More Than Taiwan Sites

TSMC's new semiconductor manufacturing facility in Phoenix, Arizona, will face production costs approximately 30% higher than its Taiwan-based operations when it begins mass production in early 2025. The increased expenses stem from higher tariffs and transportation costs associated with importing necessary materials from Taiwan. The Arizona facility will start producing 10,000 12-inch wafers monthly using a 4 nm node, with plans to double output to 20,000 wafers at full capacity. Four major technology companies—Apple, NVIDIA, AMD, and Qualcomm—have committed to purchasing chips from the plant for their AI and high-performance computing needs. The 445-hectare facility highlights ongoing challenges in America's semiconductor industry. Despite the aim to strengthen domestic chip manufacturing, the plant must import materials from Taiwan to maintain production quality, revealing gaps in the US semiconductor supply chain.

This overseas dependency drives up operational costs significantly. While TSMC's investment marks an essential step in rebuilding domestic capacity, the substantial cost difference between US and Taiwanese production raises questions about long-term viability. TSMC has already begun trial production at the site and plans to expand operations with additional phases. The company's Phase 2 facility is completed, and equipment is being installed, while future expansions aim to produce 2 nm chips by 2028. However, unless the cost gap narrows, the higher production expenses could impact the plant's competitiveness in the global semiconductor market, even competing with its own Taiwanese facilities, where customers could decide to use Taiwanese fabs due to lower costs. Meanwhile, TSMC continues to expand its Taiwan operations, with plans to build new 2 nm facilities in Kaohsiung's Science Park starting next year.

TSMC and NVIDIA Reportedly in Talks to Bring "Blackwell" GPU Production to Arizona

TSMC is reportedly negotiating with NVIDIA to manufacture advanced "Blackwell" GPUs in its Arizona facility. First reported by Reuters, this partnership could mark another major shift in AI chip production toward US soil. The discussion centers around TSMC's Fab 21 in Phoenix, Arizona, specializing in 4 nm and 5 nm chip production. NVIDIA's Blackwell GPUs utilize TSMC's 4NP process technology, making the Arizona facility a technically viable production site. However, the proposed arrangement faces several logistical challenges. A key issue is the absence of advanced packaging facilities in the United States. There is Amkor that planned to do advanced packaging, but it's only scheduled to begin packaging in 2027. TSMC's sophisticated CoWoS packaging technology is currently available only in Taiwan. This means that chips manufactured in Arizona would need to be shipped back to Taiwan for final assembly, potentially increasing production costs.

While alternative solutions exist, such as redesigning the chips to use Intel's packaging technology or focusing on gaming GPU production in Arizona, these options present their own complications. Intel's packaging methods would likely increase costs, and the current absence of graphics card manufacturing infrastructure in the US makes domestic gaming GPU production less practical. Both TSMC and NVIDIA have declined to comment on the ongoing negotiations, as this is confidential information unknown to the public. Interestingly, TSMC's Arizona facility has already attracted a few more US firms for domestic manufacturing, like Apple, rumored to manufacture its A16 Bionic chip and AMD with high-performance designs, likely either EPYC or Instinct MI chips.

AMD Ryzen AI MAX 300 "Strix Halo" iGPU to Feature Radeon 8000S Branding

AMD Ryzen AI MAX 300-series processors, codenamed "Strix Halo," have been on in the news for close to a year now. These mobile processors combine "Zen 5" CPU cores with an oversized iGPU that offers performance rivaling discrete GPUs, with the idea behind these chips being to rival the Apple M3 Pro and M3 Max processors powering MacBook Pros. The "Strix Halo" mobile processor is an MCM that combines one or two "Zen 5" CCDs (some ones featured on "Granite Ridge" desktop processors and "Turin" server processors), with a large SoC die. This die is built either on the 5 nm (TSMC N5) or 4 nm (TSMC N4P) node. It packs a large iGPU based on the RDNA 3.5 graphics architecture, with 40 compute units (CU), and a 50 TOPS-class XDNA 2 NPU carried over from "Strix Point." The memory interface is a 256-bit wide LPDDR5X-8000 for sufficient memory bandwidth for the up to 16 "Zen 5" CPU cores, the 50 TOPS NPU, and the large 40 CU iGPU.

Golden Pig Upgrade leaked what looks like a company slide from a notebook OEM, which reveals the iGPU model names for the various Ryzen AI MAX 300-series SKUs. Leading the pack is the Ryzen AI MAX+ 395. This is a maxed out SKU with a 16-core/32-thread "Zen 5" CPU that uses two CCDs. All 16 cores are full-sized "Zen 5." The CPU has 64 MB of L3 cache (32 MB per CCD), each of the 16 cores has 1 MB of dedicated L2 cache. The iGPU is branded Radeon 8060S, it comes with all 40 CU (2,560 stream processors) enabled, besides 80 AI accelerators, and 40 Ray accelerators. The Ryzen AI MAX 390 is the next processor SKU, it comes with a 12-core/24-thread "Zen 5" CPU. Like the 395, the 390 is a dual-CCD processor, all 12 cores are full-sized "Zen 5." There's 64 MB of L3 cache, and 1 MB of L2 cache per core. The Radeon 8060S graphics solution is the same as the one on the Ryzen AI MAX+ 395, it comes with all 40 CU enabled.

The Next Level in Gaming: MSI X870(E) Series Motherboard and AMD Ryzen 7 9800X3D Unleash Unmatched Performance

MSI is thrilled to introduce the upcoming AMD Ryzen 7 9800X3D, an innovation built on the Zen 5 architecture and featuring AMD's groundbreaking 3D V-Cache technology. The Ryzen 7 9800X3D is designed for peak performance with improved IPC and superior power efficiency compared to the previous generation, promising an exhilarating leap in computing power.

The Ryzen 7 9800X3D integrates seamlessly with the AM5 socket ecosystem, providing users access to PCIe Gen 5 bandwidth and high-speed DDR5 memory support. Built on a 4 nm process, this processor establishes a new performance, power efficiency, and responsiveness benchmark, ideal for intensive gaming and content creation. MSI's X870(E) motherboards are fully compatible with the Ryzen 7 9800X3D, featuring a robust lineup from MEG X870E GODLIKE to MAG X870 TOMAHAWK WIFI. MSI's X870(E) motherboards and AMD's latest processors unlock peak gaming performance for users.

TSMC Arizona Achieves 4% Higher Yields Than Taiwanese Facilities, Marking Progress for US Silicon Manufacturing

The American semiconductor landscape reached a significant milestone as TSMC's new Arizona manufacturing facility demonstrated remarkable production efficiency, exceeding its Taiwanese counterparts by 4% in yield rates. This achievement, revealed at a recent industry webinar by the company's US division chief, represents a major step forward in America's push to strengthen domestic chip manufacturing capabilities. Since initiating its 4 nm node production operations this spring, the Phoenix-based facility has demonstrated impressive technical proficiency, achieving production standards that match and surpass TSMC's established Taiwanese facilities. The project, backed by substantial federal support, including $11.6 billion in combined grants and loans plus significant tax incentives, aims to establish three cutting-edge manufacturing plants in Arizona.

The company's global leadership praised the facility's performance, noting its strategic importance in demonstrating TSMC's ability to maintain exceptional manufacturing standards across international locations. This success carries particular weight given the project's earlier hurdles, which included workforce challenges and timeline adjustments that shifted the entire production schedule by approximately one year. This development gains additional significance against industry-wide challenges, particularly as competitors like Intel and Samsung face operational and financial obstacles. The semiconductor giant's plans now extend to potential further expansion, with the Phoenix site capable of hosting up to six manufacturing facilities. Future growth prospects could be enhanced by proposed additional government initiatives supporting domestic chip production.

AMD Ryzen Z2 Extreme to Feature a 3+5 Core Configuration

The second generation of AMD Ryzen Z-series processors for handheld gaming consoles, will be led by the Ryzen Z2 Extreme. There will also be an affordable Ryzen Z2 (non-Extreme). We've known for some time that the Z2 Extreme is based on the 4 nm "Strix Point" monolithic silicon, with some optimization (the highest bins to facilitate the best energy efficiency); but now we have a few more details thanks to a leak by Golden Pig Upgrade. AMD's engineering effort with the Z2 Extreme will be to give the console the most generational performance uplift from the iGPU, rather than the CPU.

The "Strix Point" silicon features a significantly updated iGPU from the previous-generation "Phoenix." It's based on the more efficient RDNA 3.5 graphics architecture, which is better optimized for LPDDR5 memory; and comes with 16 compute units (CU), compared to 12 on the "Phoenix." The Ryzen Z2 Extreme will come with all 16 CU enabled. The CPU is where some interesting changes are planned. The "Strix Point" silicon features a dual-CCX CPU, one of these contains four "Zen 5" CPU cores sharing a 16 MB L3 cache, while the other features eight "Zen 5c" cores sharing an 8 MB L3 cache. For the Ryzen Z2 Extreme, AMD is going with an odd 3+5 core configuration. What this means is that the Ryzen Z2 Extreme will have 3 "Zen 5" cores, and 5 "Zen 5c" cores. The L3 cache on the CCX with "Zen 5" cores has been reduced to 8 MB in size. On paper, this is still an 8-core/16-thread CPU with 16 MB of L3 cache (same as "Phoenix,") but now you know that there's more going on.

AMD to Reduce RDNA 4 "Navi 44" Chip Package Size

GPU chip packages of the "Navi 4x" generation of GPUs could be generationally smaller than their predecessors, according to leaked package dimensions of the "Navi 44" chip put out by Olrak29_. With its next-generation Radeon RX gaming GPUs based on the RDNA 4 graphics architecture, AMD has decided to focus on gaining market-share in the performance and mainstream segments, ceding the enthusiast segment to NVIDIA. As part of its effort, the company is making RDNA 4 efficient at every level—architecture, process, and package.

At the architecture level, RDNA 4 is expected to improve performance, particularly the performance cost of ray tracing, through a more specialized ray tracing hardware stack. At the process level, AMD is expected to switch to a more efficient foundry node, with some reports suggesting the TSMC 4 nm, such as the N4P or N4X. For a mid-range GPU like the "Navi 44," which succeeds the "Navi 23" and "Navi 33," these mean a rather big leap from the 7 nm or 6 nm DUV nodes. The leak suggests a smaller package, measuring 29 mm x 29 mm. In comparison, the "Navi 23" package measures 35 mm x 35 mm. The smaller package could make these GPUs friendlier with gaming notebooks, where mainboard PCB real-estate is at a premium.

AMD Launches New Ryzen AI PRO 300 Series Processors to Power Next Generation of AI PCs

Today, AMD (NASDAQ: AMD) announced its third generation commercial AI mobile processors, designed specifically to transform business productivity with Copilot+ features including live captioning and language translation in conference calls and advanced AI image generators. The new Ryzen AI PRO 300 Series processors deliver industry-leading AI compute, with up to three times the AI performance than the previous generation, and offer uncompromising performance for everyday workloads. Enabled with AMD PRO Technologies, the Ryzen AI PRO 300 Series processors offer world-class security and manageability features designed to streamline IT operations and ensure exceptional ROI for businesses.

Ryzen AI PRO 300 Series processors feature new AMD "Zen 5" architecture, delivering outstanding CPU performance, and are the world's best line up of commercial processors for Copilot+ enterprise PCs. Laptops equipped with Ryzen AI PRO 300 Series processors are designed to tackle business' toughest workloads, with the top-of-stack Ryzen AI 9 HX PRO 375 offering up to 40% higher performance and up to 14% faster productivity performance compared to Intel's Core Ultra 7 165U. With the addition of XDNA 2 architecture powering the integrated NPU, AMD Ryzen AI PRO 300 Series processors offer a cutting-edge 50+ NPU TOPS (Trillions of Operations Per Second) of AI processing power, exceeding Microsoft's Copilot+ AI PC requirements and delivering exceptional AI compute and productivity capabilities for the modern business. Built on a 4 nm process and with innovative power management, the new processors deliver extended battery life ideal for sustained performance and productivity on the go.

Samsung to Launch 2nm Production Line with 7,000-Wafer Monthly Output by Q1 2025

Samsung Electronics is speeding up its work on 2 nm production facilities, industry sources say. The company has started to install advanced equipment at its "S3" foundry line in Hwaseong to set up a 2 nm production line. This line aims to produce 7,000 wafers each month by the first quarter of next year. Also, Samsung plans to create a 1.4 nm production line at its "S5" foundry in Pyeongtaek Plant 2 by the second quarter of next year. This line has a goal to make 2,000 to 3,000 wafers each month. By the end of next year, Samsung will change all the remaining 3 nm production lines at "S3" to 2 nm.

As we reported earlier, Samsung has pushed back the start date for its Tyler, Texas foundry. The plant set to open by late 2024, won't install equipment until after 2026. Also, Samsung has changed its plans for the Pyeongtaek Fab 4 foundry line. Because of lower demand, it will now make DRAM instead, moreover, at Pyeongtaek Fab 3, which has a 4 nm line, Samsung has cut back production. These changes are part of Samsung's plan to make 2 nm chips next year and 1.4 nm chips by 2027. The company wants to catch up with its rival TSMC, right now, Samsung has 11.5% of the global foundry market in Q2, while TSMC leads with 62.3%. An industry expert stressed how crucial this is saying, "With the delay in 3 nm Exynos production and other issues, getting the 2 nm process right could make or break Samsung Foundry". The struggle for Samsung is real, with the company's top management, led by DS Division Vice Chairman Jeon Young-hyun, having recently issued a public apology for the division's underwhelming performance.

AMD Granite Ridge "Zen 5" Processor Annotated

High-resolution die-shots of the AMD "Zen 5" 8-core CCD were released and annotated by Nemez, Fitzchens Fitz, and HighYieldYT. These provide a detailed view of how the silicon and its various components appear, particularly the new "Zen 5" CPU core with its 512-bit FPU. The "Granite Ridge" package looks similar to "Raphael," with up to two 8-core CPU complex dies (CCDs) depending on the processor model, and a centrally located client I/O die (cIOD). This cIOD is carried over from "Raphael," which minimizes product development costs for AMD at least for the uncore portion of the processor. The "Zen 5" CCD is built on the TSMC N4P (4 nm) foundry node.

The "Granite Ridge" package sees the up to two "Zen 5" CCDs snuck up closer to each other than the "Zen 4" CCDs on "Raphael." In the picture above, you can see the pad of the absent CCD behind the solder mask of the fiberglass substrate, close to the present CCD. The CCD contains 8 full-sized "Zen 5" CPU cores, each with 1 MB of L2 cache, and a centrally located 32 MB L3 cache that's shared among all eight cores. The only other components are an SMU (system management unit), and the Infinity Fabric over Package (IFoP) PHYs, which connect the CCD to the cIOD.

Samsung's 2nm Yield Problems Remain Unresolved

Samsung's foundry plans have again hit a major setback. The company notified staff at its Taylor, Texas facility that it was temporarily removing workers from the site because it is still experiencing challenges with 2 nm semiconductor yields, delaying mass production timelines from late 2024 to 2026. The Taylor site had been anticipated as the flagship facility for Samsung's sub-4 nm production, allowing access to potential customers near the facility. While Samsung has moved rapidly in terms of process development, its yields for advanced nodes have outstripped them, the company's yields for sub-3 nm processes hover around 50%, with Gate-All-Around (GAA) technology witnessing yields of only 10-20%, significantly lower than neighboring competitor TSMC's 60-70% for corresponding nodes.

The yield gaps that the company is experiencing have exacerbated the gap in market share, with TSMC capturing 62.3% of the global foundry market share in Q2 versus Samsung's 11.5%. The company is struggling to gain share despite efforts by Chairman Lee Jae-yong - including visits to component suppliers ASML, and Zeiss - and these yields put at risk as much as 9 trillion won in U.S. CHIP Act potential subsidies that are dependent upon operational milestones.

TSMC Arizona Achieves Yield Parity with Taiwanese Facilities, Production Remains on Schedule

TSMC has reportedly managed to produce yields at its Arizona facility that are on par with yields back home in Taiwan, making its expansion efforts successful. According to Bloomberg, TSMC did a trial production, a multi-month effort, to produce N4 node wafers with low defect rates. With wafers now in TSMC's labs for testing, it is reported that Arizona facility yields have achieved parity with their Taiwanese facilities back home. This indicates that TSMC's efforts to expand in the US are so far considered a success, as advanced chipmaking is a very complex process that is only done by a few makers and in very few locations. With TSMC expanding in the US now and proving that its technology can work on US soil, the company has a green light to start volume production in the first half of 2025.

However, this is only the beginning of TSMC's Arizona expansion. The Taiwanese giant plans to have a second fab operational by 2028 and produce 2 nm and 3 nm chips in the state. Additionally, there will be a third facility for 2 nm and more advanced nodes in Phoenix, bringing the total value of TSMC's US expansion efforts to $65 billion, with $6.6 billion from the CHIPS Act grants and $5 billion in loans from the US government. If upcoming fabs follow the lead of the first facility, US-based production needs will possibly be satisfied.

AMD Readies Ryzen Z2 Chip for Handhelds Based on "Strix Point" Silicon

AMD is readying a major update to its category-defining Ryzen Z-series SoCs, with the new Ryzen Z2. Designed for handheld game consoles, the Ryzen Z-series chips are typically power-optimized variants of its mobile processors designed for ultra-low board footprint, allowing PC OEMs to build handheld game consoles with them. Facing competition from Intel's upcoming Core Ultra 200V "Lunar Lake-MX" SoCs in this segment, AMD is readying the Ryzen Z2 chip. The Z2 is based on the 4 nm "Strix Point" silicon, which gives it a significantly updated iGPU, as well as a higher core-count CPU.

Perhaps the biggest sub-system performance uplift console designers can expect from the Ryzen Z2 is graphics—AMD has given the "Strix Point" a larger iGPU with 16 compute units in place of 12 on "Phoenix," which is a 33% increase in just numerical terms. Then there's also the update to the newer RDNA 3.5 graphics architecture, which incorporates several architecture-level performance and battery-efficiency improvements. It's also better optimized for LPDDR5 memory. With CPU, AMD has given "Strix Point" a heterogeneous multicore setup with four "Zen 5" and eight "Zen 5c" cores. At this point, we don't know if all 12 cores are enabled on the Z2. ASUS is designing its next generation of ROG Ally consoles powered by the Ryzen Z2, and its designers hint that the console should be able to offer over 1 hour of "Black Myth: Wukong" gameplay on a full charge of battery—something current-gen ROG Ally X powered by the Z1 doesn't.

MSI Announces New Features and Support for AMD Ryzen 9000 Series Processors

MSI is excited to announce the launch of the latest AMD Ryzen 9000 Series processors, set to debut on the AM5 platform. Powered by advanced 4 nm CPU process technology, the Ryzen 9000 Series promises to revolutionize the computing landscape with unmatched performance, efficiency, and versatility for gamers and content creators. At launch, August 8th, AMD Ryzen 7 9700X, and Ryzen 5 9600X are available while the Ryzen 9 9950X and 9900X will launch on August 15th. These processors will feature up to 16 cores and 32 threads, with a theoretical maximum boost clock speed of 5.7 GHz, 64 MB of L3 cache, and a maximum TDP of 170 W.

AMD Ryzen 9000 Series will also support PCIe 5.0 for the GPU and M.2 while enhancing DDR5 memory speed. Notably, the AMD Ryzen 7 9700X offers approximately 12% better overall performance than the first-gen AMD 3D V-cache CPU. All these processors are compatible with the AM5 socket, and existing AMD 600 Series motherboards and Ryzen 9000 Series processors can seamlessly integrate by updating to the latest BIOS, available on MSI's product support page.

AMD Strix Point Silicon Pictured and Annotated

The first die shot of AMD's new 4 nm "Strix Point" mobile processor surfaced, thanks to an enthusiast on Chinese social media. "Strix Point" is a significantly larger die than "Phoenix." It measures 12.06 mm x 18.71 mm (L x W), compared to the 9.06 mm x 15.01 mm of "Phoenix." Much of this die size increase comes from the larger CPU, iGPU, and NPU. The process has been improved from TSMC N4 on "Phoenix" and its derivative "Hawk Point," to the newer TSMC N4P node.

Nemez (GPUsAreMagic) annotated the die shot in great detail. The CPU now has 12 cores spread across two CCX, one of which contains four "Zen 5" cores sharing a 16 MB L3 cache; and the other with eight "Zen 5c" cores sharing an 8 MB L3 cache. The two CCXs connect to the rest of the chip over Infinity Fabric. The rather large iGPU takes up the central region of the die. It is based on the RDNA 3.5 graphics architecture, and features 8 workgroup processors (WGPs), or 16 compute units (CU) worth 1,024 stream processors. Other key components include four render backends worth 16 ROPs, and control logic. The GPU has its own 2 MB of L2 cache that cushions transfers to the Infinity Fabric.

AMD Ryzen "Fire Range" Mobile Processor Retains FL1 Package

AMD is readying a successor to its Ryzen 7045 series "Dragon Range" mobile processor for gaming notebooks and portable workstations. While we don't know its processor model naming yet, the chip is codenamed "Fire Range." We are learning that it will retain the FL1 package as "Dragon Range," which means it will be pin-compatible. This would significantly reduce development costs for notebook OEMs, as they can simply carry over their mainboard designs from their notebooks based on "Dragon Range."

"Fire Range" is essentially a mobile BGA version of the upcoming Ryzen 9000 "Granite Ridge" desktop processor. The FL1 package measures 40 mm x 40 mm in size, and has substrate for two CCDs and a cIOD, just like the desktop chip. "Fire Range" hence features one or two 4 nm "Zen 5" CCDs, depending on the processor model, and the 6 nm client I/O die. Much like "Dragon Range," the "Fire Range" chip will lack support for LPDDR5, and rely on conventional PC DDR5 memory in the SO-DIMM or CAMM2 form-factors. Besides the CPU core count consisting exclusively of full-sized "Zen 5" cores, the main flex for "Fire Range" over "Strix Point" will be its 28-lane PCIe Gen 5 root-complex, which can wire out the fastest discrete mobile GPUs, as well as drive multiple M.2 NVMe slots with Gen 5 wiring, and other high-bandwidth devices, such as Thunderbolt 4, USB4, or Wi-Fi 7 controllers wired directly to the processor.

Ryzen 9000 Chip Layout: New Details Announced

AMD "Granite Ridge" is codename for the four new Ryzen 9000 series desktop processors the company plans to launch on July 31, 2024. The processor is built in the Socket AM5 package, and is meant to be backwards compatible with AMD 600-series chipset motherboards, besides the new 800-series chipset ones that will launch alongside. "Granite Ridge" is a chiplet-based processor, much like the Ryzen 7000 "Raphael," Ryzen 5000 "Vermeer," and Ryzen 3000 "Matisse." AMD is carrying over the 6 nm client I/O die over from "Raphael" in an effort to minimize development costs, much in the same way it carried over the 12 nm cIOD for "Vermeer" from "Matisse."

The SoC I/O features of "Granite Ridge" are contemporary, with its awesome 28-lane PCI-Express Gen 5 root complex that allows a PCI-Express 5.0 x16, two CPU-attached M.2 Gen 5 slots, and a Gen 5 x4 chipset bus. There's also a basic integrated graphics solution based on the older RDNA 2 graphics architecture; which should make these processors fit for all use-cases that don't need discrete graphics. The iGPU even has multimedia accelerators, an audio coprocessor, a display controller, and USB 3.2 interfaces from the processor.

Avnet ASIC Team Launches Ultra-Low-Power Design Services for TSMC's 4nm Process Nodes

Avnet ASIC, a division of Avnet Silica, an Avnet company, today announced that it has launched its new ultra-low-power design services for TSMC's cutting-edge 4 nm and below process technologies. These services are designed to enable customers to achieve exceptional power efficiency and performance in their high-performance applications, such as blockchain and AI edge computing. TSMC is the world's leading silicon foundry and Avnet ASIC division is a leading provider of ASIC and SoC full turnkey solutions.

The new design services leverage a comprehensive approach to address the challenges of operating at extreme low-voltage conditions in the 4 nm and below nodes. This includes recharacterizing standard cells for lower voltages, performing early RTL exploration to optimize power, performance, and area (PPA) tradeoffs, implementing an optimized clock tree, and utilizing transistor-level simulations to enhance the power optimization process.

NVIDIA GeForce "Blackwell" Won't Arrive Before January 2025?

It appears like 2024 will go down as the second consecutive year without any new GPU generation launch from either NVIDIA or AMD. Kopite7kimi, a reliable source with NVIDIA leaks, says that the GeForce RTX 50-series "Blackwell" generation won't see a debut before the 2025 International CES (January 2025). It was earlier expected that the company would launch at least its top two SKUs—the RTX 5090 and RTX 5080—toward the end of 2024, and ramp the series up from 2025. There is no explanation behind this "delay." Like everyone else, NVIDIA could be rationing its foundry allocation of the 3 nm wafers from TSMC for its high-margin "Blackwell" AI GPUs. The company now makes over five times the revenue from selling AI GPUs than it does from gaming GPUs, so this development should come as little surprise.

Things aren't any different with NVIDIA's rivals in this space, AMD and Intel. AMD's RDNA 4 graphics architecture and the Radeon RX series GPUs based on it, aren't expected to arrive before 2025. AMD is making several architectural upgrades with RDNA 4, particularly to its ray tracing hardware; and the company is expected to build these GPUs on a new foundry node. Meanwhile, Intel's Arc B-series gaming GPUs based on the Xe2 "Battlemage" graphics architecture are expected to arrive in 2025, too, although these chips are rumored to be based on a more mature 4 nm-class foundry node.

AMD Granite Ridge and Strix Point Zen 5 Die-sizes and Transistor Counts Confirmed

AMD is about give the new "Zen 5" microarchitecture a near-simultaneous launch across both its client segments—desktop and mobile. The desktop front is held by the Ryzen 9000 "Granite Ridge" Socket AM5 processors; while Ryzen AI 300 "Strix Point" powers the company's crucial effort to capture Microsoft Copilot+ AI PC market share. We recently did a technical deep-dive on the two. HardwareLuxx.de scored two important bits of specs for both processors in its Q&A interaction with AMD—die sizes and transistor counts.

To begin with, "Strix Point" is a monolithic silicon, which is confirmed to be built on the TSMC N4P foundry node (4 nm). This is a slight upgrade over the N4 node that the company built its previous generation "Phoenix" and "Hawk Point" processors on. The "Strix Point" silicon measures 232.5 mm² in area, which is significantly larger than the 178 mm² of "Hawk Point" and "Phoenix." The added die area comes from there being 12 CPU cores instead of 8, and 16 iGPU compute units instead of 12; and a larger NPU. There are many other factors, such as the larger 24 MB CPU L3 cache; and the sizes of the "Zen 5" and "Zen 5c" cores themselves.

TSMC to Raise Wafer Prices by 10% in 2025, Customers Seemingly Agree

Taiwanese semiconductor giant TSMC is reportedly planning to increase its wafer prices by up to 10% in 2025, according to a Morgan Stanley note cited by investor Eric Jhonsa. The move comes as demand for cutting-edge processors in smartphones, PCs, AI accelerators, and HPC continues to surge. Industry insiders reveal that TSMC's state-of-the-art 4 nm and 5 nm nodes, used for AI and HPC customers such as AMD, NVIDIA, and Intel, could see up to 10% price hikes. This increase would push the cost of 4 nm-class wafers from $18,000 to approximately $20,000, representing a significant 25% rise since early 2021 for some clients and an 11% rise from the last price hike. Talks about price hikes with major smartphone manufacturers like Apple have proven challenging, but there are indications that modest price increases are being accepted across the industry. Morgan Stanley analysts project a 4% average selling price increase for 3 nm wafers in 2025, which are currently priced at $20,000 or more per wafer.

Mature nodes like 16 nm are unlikely to see price increases due to sufficient capacity. However, TSMC is signaling potential shortages in leading-edge capacity to encourage customers to secure their allocations. Adding to the industry's challenges, advanced chip-on-wafer-on-substrate (CoWoS) packaging prices are expected to rise by 20% over the next two years, following previous increases in 2022 and 2023. TSMC aims to boost its gross margin to 53-54% by 2025, anticipating that customers will absorb these additional costs. The impact of these price hikes on end-user products remains uncertain. Competing foundries like Intel and Samsung may seize this opportunity to offer more competitive pricing, potentially prompting some chip designers to consider alternative manufacturing options. Additionally, TSMC's customers could reportedly be unable to secure their capacity allocation without "appreciating TSMC's value."
Return to Keyword Browsing
Jan 8th, 2025 06:30 EST change timezone

New Forum Posts

Popular Reviews

Controversial News Posts